Open-Source,
AI testing library

Automatically run exhaustive test suites to identify risks on your LLMs.
Get started
import giskard
from
langchain import chains, prompts
llm = ...
prompt = prompts.PromptTemplate(       input_variables=[
"product"],       template="..."
)
chain = chains.LLMChain(
   llm=llm,
   prompt=prompt
)
# Wrap your Pandas DataFrame and model
dataset = giskard.Dataset(df, ...)
model = giskard.Model(chain, ...)


# Scan for vulnerabilities
results = giskard.scan(model, dataset)
Copy to clipboard
import giskard
from
transformers import AutoTokenizer
from
transformers import TFAutoModel
tk = AutoTokenizer.from_pretrained(...)
hf = TFAutoModel.from_pretrained(...)
# Pipeline for the model prediction
def pred_func(df):    
    return
softmax(hf(**tk(...).logits))# Wrap your Pandas DataFrame and model
dataset = giskard.Dataset(df=text_df, ...)
model = giskard.Model(model=pred_func, ...)
# Scan for vulnerabilities
results = giskard.scan(model, dataset)
Copy to clipboard
import giskard
from torchtext.models
import
XLMR_BASE_ENCODER

model = XLMR_BASE_ENCODER.get_model(head=h)

# Pipeline for the model prediction
def pred_func(df):    
    
output_df = DataLoader(df.map(T))       return [model(i) for i in output_df]

# Wrap your Pandas DataFrame and model
dataset = giskard.Dataset(df=text_df, ...)
model = giskard.Model(model=pred_func, ...)

# Scan for vulnerabilities
results = giskard.scan(model, dataset)
Copy to clipboard
import giskard

model = ... # tensorflow model

# Define a custom wrapper
class MyTensorFlowModel(giskard.Model):       def model_predict(self, df):
       return
self.model.predict(
           pipeline.transform(df))

# Wrap your Pandas DataFrame and model
dataset = giskard.Dataset(df, ...)
model = MyTensorFlowModel(model, ...)

# Scan for vulnerabilities
results = giskard.scan(model, dataset)
Copy to clipboard
import giskard, requests

def pred_func(input_data):    
    
# Set up the API endpoint URL
   
api = "https://api.example.com/predict"
    # Send GET request to API & get     response
    response = requests.get(
    api, params={
"input": input_data}
   )

    
# Extract predictions from JSON     response
    return
...

# Wrap your Pandas DataFrame and model dataset = giskard.Dataset(df, ...)
model = giskard.Model(pred_func,   ...)


# Scan for vulnerabilities
results = giskard.scan(model, dataset)
Copy to clipboard

Product workflow

Deliver AI products, better & faster. Become an AI superhero.
1
Scan
Automatically identify the risks of language models.

2
Test
Run tests to protect against risks of regressions.
3
Automate
Automatically publish reports in your CI/CD pipeline.

Detect critical risks in AI systems, before production

Hallucination and Misinformation

Safeguard against non-factual outputs, preserving accuracy.

Harmful Content
Generation

Ensure models steer clear of malicious or harmful response.

Prompt Injection

Guard against LLM manipulations that bypass filters or override model instructions.

Information Disclosure

Guarantee user privacy, ensuring LLMs doesn't divulge sensitive data.

Robustness

Detect when model outputs are sensitive to small perturbations in the input data.

Stereotypes &
Discrimination

Avoid model outputs that perpetuate biases, stereotypes, or discriminatory content.

Integrates with your favorite Machine Learning tools

Test your LLM application

Go beyond generic benchmarks

Generate automated tests for precise & contextual assessments, from RAG to chatbots.

Get started

Automate your RAG Agent evaluation

Generate realistic test cases automatically to detect weaknesses and evaluate answer correctness across your RAG agent components.

Get started

Automate AI tests in your CI/CD pipeline

Automatically generate a test suite based on detected vulnerabilities, and integrate it directly in your CI/CD pipeline.

Documentation

Gain more capabilities with Giskard Hub

The first all-in-one red teaming platform: security and business compliance.
Discover

Join our Discord community

Welcome to an inclusive community focused on AI Quality & Security! Join us to share best practices, create new tests, and shape the future of AI standards together.
Join
Get AI security insights in your inbox